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Abstract
By employing a recently introduced optimization algorithm we construct
optimally synchronizable (unweighted) networks for any given scale-free
degree distribution. We explore how the optimization process affects degree–
degree correlations and observe a generic tendency toward disassortativity.
Still, we show that there is not a one-to-one correspondence between
synchronizability and disassortativity. On the other hand, we study the nature
of optimally un-synchronizable networks, that is, networks whose topology
minimizes the range of stability of the synchronous state. The resulting
‘pessimal networks’ turn out to have a highly assortative string-like structure.
We also derive a rigorous lower bound for the Laplacian eigenvalue ratio
controlling synchronizability, which helps understanding the impact of degree
correlations on network synchronizability.

PACS numbers: 89.75.Hc, 05.45.Xt, 87.18.Sn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Synchronizability is one of the currently leading problems in the fast-growing field of complex
networks [1]. A number of studies have been devoted to scrutinize which network topologies
are more prone to sustain a stable globally-synchronized state of generic oscillators defined at
each of its nodes [2–9]. This question is of broad interest since many complex systems in fields
ranging from physics, biology, computer science, or physiology, can be seen as networks of
coupled oscillators, whose functionality depends crucially on the network ability to maintain
a synchronous oscillation pattern. In addition, it has been shown that networks with good
synchronizability are also ‘good’ for (i) fast random walk spreading and therefore for efficient
communication [8], (ii) searchability in the presence of congestion [10], (iii) robustness in
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the absence of privileged hubs [11], (iv) performance of neural networks [12], (v) generating
consensus in social networks, etc. Another related and important problem that has received a
lot of attention, but that we will not study here, is the dynamics toward synchronized states
(see, for example [13]).

In general terms, we can say that the degree of synchronizability is high when all the
different nodes in a given network can ‘talk easily’ to each other, or information packets can
travel efficiently from any starting node to any target one. It was first observed that adding
some extra links to an otherwise regular lattice in such a way that a small-world topology [1]
is generated, enhances synchronizability [2]. This was attributed to the fact that the node-to-
node average distance diminishes as extra links are added. Afterwards, heterogeneity in the
degree distribution was shown to hinder synchronization in networks of symmetrically coupled
oscillators, leading to the so-called ‘paradox of heterogeneity’ as heterogeneity is known to
reduce in average the node-to-node distance but still it suppresses synchronizability. The effect
of other topological features as betweenness centrality, correlation in the degree distribution
and clustering has been also analyzed. For example, it has been shown that the presence of
weighted links (rather than uniform ones) and asymmetric couplings do enhance further the
degree of synchronizability [5, 6], but here we focus on un-weighted and un-directed links.

Certainly, the main breakthrough was made by Barahona and Pecora [2] who, in a
series of papers, established a criterion based on spectral theory to determine the stability
of synchronized states under very general conditions. Their main contribution is to link
graph spectral properties with network dynamical properties. In particular, they considered
the Laplacian matrix, encoding the network topology, and showed that the degree of
synchronizability (understood as the range of stability of the synchronous state) is controlled
by the ratio between its largest eigenvalue (λN) and the smallest non-trivial one (λ2),
i.e. Q = λN/λ2, where N is the total number of nodes3. The smaller Q the better the
synchronizability.

Note that, as the range of variability of λN is quite limited (it is directly related to
the maximum connectivity [14, 15]), minimizing Q is almost equivalent to maximizing the
denominator λ2 (i.e the spectral gap) when the degree distribution is kept fixed.

It is worth noticing that, even if the eigenratio Q can be related to (or bounded by)
topological properties such as the ones cited above (average path length, betweenness
centrality, etc), none of these provides with a full characterization of a given network and
therefore they are not useful to determine strict criteria for synchronizability [7]. Nevertheless,
they can be very helpful as long as they give easy criteria to determine in a rough way
synchronizability properties, without having to resort to lengthly eigenvalue calculations.

In a couple of recent papers, we tackled the problem of finding the optimally
synchronizable topology, given a fixed number of nodes and edges linking them, and assuming
symmetric and un-weighted links [8, 9]. The strategy we followed was to implement a
simulated-annealing algorithm [16] with a cost-function given by Q; starting with a random
topology with N nodes and L links, random rewirings that decrease the value of Q are accepted
with larger probability than those increasing Q (for more details see [8, 9]), until eventually
a stationary (optimal or close to optimal) network is generated. Employing this optimization
algorithm, we identified the family of ‘optimal network topologies’ which we called entangled
networks.

The main topological trait of entangled networks is the absence of bottlenecks and hubs;
all sites are very much alike and the links form very intricate structures, which lead typically

3 Note that the Laplacian eigenvalues λi satisfy 0 = λ1 � λ2 � · · · � λN � 2kmax, where kmax is the largest degree
in the graph [14, 15].
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to (i) the absence of a well-defined community structure, (ii) poor modularity, and (iii) large
shortest loops. In this way, every single site is close to any other one owing to the existence
of a very ‘democratic’ or entangled structure in which properties such as site-to-site distance,
betweenness and minimum-loop-size are very homogeneously distributed (see [8, 9]).

Entangled networks were identified as Ramanujan graphs and they have been related
to other interesting concepts in graph theory as expanders [17] and cage-graphs (see [9] and
references therein). These are used profusely in computer science and are under current intense
study in the mathematical literature. For example, expanders and Ramanujan graphs are very
useful in the design of efficient communication networks, construction of error-correcting
codes, or de-randomization of random algorithms [9, 17]. These applications greatly amplify
the relevance of entangled networks in different contexts.

In spite of their mathematical beauty and excellent performance in network design,
entangled topologies are not easily found in biological, social or any other ‘real-life’ networks.
An exception are some food-webs, for which topologies very similar to entangled ones have
been reported [18]. As argued in [8, 9] the rarity in nature of entangled networks comes from
the fact that they emerge out of a global optimization process not easily fulfilled by means of
any dynamical simple mechanism in growing networks where, usually, only local information
is available.

Instead, real complex networks in very different contexts have been shown to exhibit,
rather generically, scale-free degree distributions. These are much more heterogeneous than
entangled topologies. Keeping this in mind, in this paper we explore the question of (global)
optimization of synchronizability within the realm of scale-free networks with a fixed degree
distribution.

In particular, constraining our optimization algorithm to preserve a scale-free architecture,
we are able to find the optimally synchronizable networks and study the emergence of non-
trivial degree–degree correlations. This study is related to previous works by Sorrentino et al
[19], who argued that disassortative networks (in which nodes with similar degrees tend to be
not connected among themselves) [20] are more synchronizable that assortative ones (where
nodes with similar degrees tend to be connected).

Our study differs from previous ones in that (i) we derive a rigorous lower bound for Q
in terms of a parameter measuring degree–degree correlations and (ii) we build up optimal
networks with a given degree distribution and, by doing so, we verify that even if it is true that
more disassortative networks typically exhibit better synchronizability, this is not always the
case.

Finally, we also face the question of which are the pessimal networks for synchronization
purposes. Actually, in some applications, synchronization (or consensus, or complete
homogenization) are not desirable properties. This might be the case, for example, in neural
networks for which global synchronization implies epileptic-like activity [21]. The question of
how topology can hinder such states is both pertinent and relevant and also, it can give further
insight on the key structural features of synchronization. With this goal in mind, we revert
the optimization algorithm, and define an inverse optimization process just by maximizing Q
(rather than minimizing it). We analyze the topology of the resulting pessimal (or optimally
un-synchronizable) networks.

2. A rigorous upper bound for the spectral gap

In this section, we derive an upper bound for the spectral graph in terms of the correlation
coefficient r. This coefficient was introduced by Newman in [20] to quantify the tendency of
nodes with similar degrees, k, to be connected between themselves. In particular, calling N
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the number of nodes and L the total number of links (L = N〈k〉/2) the correlation coefficient
r can be computed as (see [20] for more details)

r = L−1 ∑
i∼j kikj − [

L−1 ∑
i∼j

1
2 (ki + kj )

]2

L−1
∑

i∼j
1
2

(
k2
i + k2

j

) − [
L−1

∑
i∼j

1
2 (ki + kj )

]2 , (1)

where
∑

i∼j stands for the sum over links (i.e. over all nodes i and j connected by a link; every
link is counted only once). This parameter takes positive (negative) values for assortative
(disassortative) configurations.

Defining the Laplacian matrix as Lij = −1(0) if nodes i and j are connected
(disconnected), and Lii = ki , we can obtain an upper bound for Q by recalling that the
first non-trivial Laplacian eigenvalue λ2 can be expressed as [14]

λ2 = 2N min
f∈�

∑
i∼j (fi − fj )

2∑
i

∑
j (fi − fj )2

, (2)

where � is the set of all possible non-constant vectors (in the space in which the Laplacian
operator acts). Taking f = {ki, i = 1, . . . , N}, which is one possible vector out of the set �,
we obtain

λ2 � 2N

∑
i∼j (ki − kj )

2∑
i

∑
j (ki − kj )2

= A

〈k2〉 − 〈k〉2
, (3)

where A is defined as: A = 1
N

∑
i∼j (ki − kj )

2. A different selection of the vector would lead
to a different inequality. The advantage of our choice is that the obtained bound can be related
to the correlation coefficient r, even if it is not guaranteed that it provides a tight bound.

The different terms in the numerator and denominator of equation (1) can be written as

1

L

∑
i∼j

1

2
(ki + kj ) = 1

N〈k〉
∑

i

k2
i = 〈k2〉

〈k〉 ,

1

L

∑
i∼j

1

2

(
k2
i + k2

j

) = 1

N〈k〉
∑

i

k3
i = 〈k3〉

〈k〉 ,

1

L

∑
i∼j

kikj = 1

L

∑
i∼j

(
1

2

(
k2
i + k2

j

) − 1

2
(ki − kj )

2

)
= 〈k3〉 − A

〈k〉 .

(4)

By substituting these expressions in equation (1) and rearranging them we readily obtain

A = (1 − r)
〈k〉〈k3〉 − 〈k2〉〈k2〉

〈k〉 , (5)

and finally

λ2 � (1 − r)
〈k〉〈k3〉 − 〈k2〉〈k2〉
〈k〉(〈k2〉 − 〈k〉2)

, (6)

which provides a rigorous upper bound for the spectral gap in terms of r. Observe that the more
negative the value of r (i.e. the more disassortative the network) the larger the upper bound for
λ2 and, therefore, Q is allowed to take smaller values, and the corresponding network can be
more synchronizable.

Summing up, the inequality equation (6) establishes that, as a rule of thumb, disassortative
networks are more prone to have stable synchronized states than assortative ones, in agreement
with previous results [19]. As a word of caution, let us underline that this does not imply that,
given a fixed degree distribution, any disassortative network is better synchronizable than any
assortative one, as we will illustrate in the following section.
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Figure 1. Uncorrelated scale-free network (with γ = 3, N = 100 and minimum connectivity
k = 2) from which the extremization processes leading to the networks in figure 2 is started.

A similar result to ours has been recently derived [19]. In particular, upper and lower
bounds for λ2 were obtained in terms of a parameter r̂ quantifying the degree–degree correlation
(r̂ is a simplified version of the more detailed one, r, defined by equation (1)). These upper and
lower bounds were derived elaborating upon known bounds for the spectral gap in terms of
the Cheeger constant [14, 15]. In order to obtain them, the authors implicitly assume that, for
a fixed degree distribution, the Cheeger constant is an uni-parametric function of r̂ . However,
given a fixed r̂ , as this parameter does not specify completely the graph topology [7], different
graphs with different Cheeger constants can be constructed. Therefore, the derivation of the
bounds in [19] involves some type of mean-field-like approximation, while the upper bound
here has been obtained in a rigorous way.

3. Optimal and pessimal network design

In this section, we describe the optimization algorithm suitable for finding the network topology
which extremizes the stability range of a global synchronous state in networks subject to a
topological constraint: a fixed degree distribution. In particular, we apply this method to
networks with scale-free topology and analyze the degree–degree correlations of the resulting
(extremized) graphs.

The algorithm is a modified simulated-annealing [8] aimed at minimizing a cost function
F(Q), where Q = λN/λ2. A detailed description of the algorithm can be found either in
[8] or in [9]. It yields networks for which the synchronizability is close to extremal (i.e.
maximum or minimum), depending on the selected cost function F(Q). In particular, setting
F(Q) = Q one gets networks with optimal synchronizability while choosing F(Q) = −Q

the optimization procedure yields what we call pessimal networks.
The simulated-annealing rewiring process starts from networks generated using the

configuration model [23]; in particular, it starts from connected networks with N nodes and L
links, such that their degree distribution sample a power law P(k) ∼ k−γ , γ > 0, with trivial
(random) degree–degree correlation between neighboring nodes (see figure 1). All the results
in what follows correspond to γ = 3. The graphs emerging out of the Q and −Q minimization
processes, starting from the network in figure 1, are depicted in figure 2. Naked eye inspection
reveals the enormous differences between optimal and pessimal topologies. While the optimal

5



J. Phys. A: Math. Theor. 41 (2008) 224008 L Donetti et al

Figure 2. Left: optimal scale-free network obtained from that in figure 1 via minimization of
Q. Right: pessimal scale-free network obtained from that in figure 1 via maximization of Q. The
degree distributions of these two networks and the one in figure 1 are identical.

max Q
min Q
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k
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n
(k

)

161412108642
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3.5

3
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Figure 3. Ensemble average of k̄nn(k) defined as the mean degree of the neighbors of a node with
degree k, for (i) the initial uncorrelated scale-free networks with γ = 3, (ii) the optimal scale-
free networks resulting from the simulated-annealing algorithm, and (iii) the pessimal scale-free
networks obtained after maximization of Q. Results are averaged over an ensemble of ten different
networks of sizes N = 100.

ones resemble very much the very intricate and as-homogeneous-as-possible topology of
entangled networks, pessimal topologies are as chain-like as possible, with two nonlinear
‘heads’ at both extremes, necessary to preserve the scale-free topology constraint. Note that
large values of Q imply small values of λ2 and therefore, following the criterion for graph
(bi)partitioning described for instance in [22], pessimal graphs have to be easily divisible into
two parts by cutting an as-small-as-possible number of links. This is, indeed, achieved in an
optimal way for linear (chain-like) topologies.

Let us remark that different initial conditions with the same scale-free distribution, lead to
outputs indistinguishable statistically from the ones in figure1, rendering the previous results
robust.

To put these observations under a more quantitative basis, we measure degree correlations
using (i) the average degree k̄nn(k) of the neighbors of a node with degree k, and (ii) the
correlation coefficient r given by equation (1). Figure 3 shows k̄nn(k), averaged over 10
different realizations, for initially uncorrelated networks (see, as an example, figure 1) as well
as for the final optimal (figure 2, left) and pessimal (figure 2, right) networks. It reveals
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Figure 4. Time evolution of different quantities during the minimization (left) and maximization
(right) procedure of a scale-free network with γ = 3, N = 100 nodes. (a) and (d) Eigenvalue ratio
Q, (b) and (e) correlation coefficient r, (c) and (f ) shortest-loop average length �. The insets show
a zoom of the corresponding curves. Note that r (resp. �) exhibits a minimum (resp. maximum)
during the algorithmic evolution which does not correspond to its optimal value.

that optimally synchronizable scale-free networks tend to display disassortative mixing (high-
degree nodes tend to be connected with low-degree ones) while, on the contrary, pessimal
scale-free networks tend to be assortative. This result agrees with the tendency predicted
by the bound on the spectral gap in equation (6) as well as with previous results [19].
Actually, one could have anticipated these conclusions knowing that a network with good
synchronization properties is also able to efficiently communicate any two nodes [8, 9]. In
this sense, disassortative mixing, in which low connected nodes are preferentially linked to
hubs which act as information distributors, seems most efficient.

On the other hand, pessimally synchronizable networks resulting from the minimization
of −Q (or, equivalently, maximization of Q), tend to exhibit assortative mixing, i.e. k̄nn(k)

grows with k, at least up to a finite-size cutoff k∗, as shown in figure 3. The origin of such
a cutoff is evident after realizing that the probability of having large hubs connected to other
very large hubs must go to zero since the total number of links present in the system is
finite. Obviously, the cutoff grows with system size and diverges asymptotically. The highly
assortative chain-like topology of pessimal networks can be understood by the necessity of
hampering the efficient communication between any two nodes in the system. This is achieved
by maximizing the distance between any two hubs by interposing between them a linear chain
of poorly-connected nodes.

Let us underline that the above observation on the effect of disassortative (assortative)
mixing does not necessarily imply that maximizing disassortativity (assortativity) leads to
optimal (pessimal) synchronizability. This is illustrated in figures 4(a)–(b) (figures 4(d)–(e)),
which plot respectively the time evolution of the eigenratio Q and the correlation coefficient r
during the optimization processes. The figure regarding optimization shows that the eigenratio
Q is not a monotonic function of r. This fact is made explicit in the insets to figures 4(a)–
(b): the asymptotic minimum value of Q does not correspond to the network for which r
is minimum (obtained in the example shown around t = 4 × 105 steps). This points out
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that, despite being a good indicator of synchronizability, disassortativity cannot be regarded
as an unique topological measure of the stability of the synchronous state [7]. Moreover,
further correlations apart from the observed assortativity/disassortativity are built up during
the optimization process. In figure 4(c) we plot the time evolution of the shortest-loop average
length �, defined as the average over all nodes of the shortest loop passing through each node;
it shows that � grows during the minimization of Q, but again it exhibits a maximum before
reaching its optimal-topology value. The tendency toward forming large loops for optimally
synchronizable networks was reported before for entangled networks, where the smallest loops
tend to be as large as possible [8, 9].

At this point we want to emphasize that the approach we have undertaken here is
complementary to that by Sorrentino et al in [19]. These authors explore different random
networks with a predefined degree distribution and various degrees of assortativity, analyzing
how such built-in correlations affect the eigenratio Q. They conclude that disassortativity
enhances synchronizability. On the other hand, in this paper we build up optimally
synchronizable scale-free networks (starting from uncorrelated graphs and using a simulated-
annealing optimization procedure) and analyze a posteriori the emerging correlations, showing
that optimally synchronizable networks tend to be disassortative.

4. Conclusions

We have studied the problem of network synchronizability, which is directly related to
many other important problems as efficient communication, searchability in the presence
of congestion, many computer-science tasks, etc. While generically, the optimal networks
for synchronizability, assuming un-weighted and un-directed links, are super-homogeneous,
entangled topologies, in which all nodes look very much alike, in this work we have
investigated the nature of optimal scale-free networks. The final goal is to analyze the
degree–degree correlations of optimal scale-free networks.

For that, we have used the standard spectral approach consisting in relating the degree of
synchronizability to the Laplacian matrix eigenratio Q. In a first part of this work, we have
derived a rigorous lower bound for Q in terms of the correlation coefficient r (as defined
by equation (1)), which is a measure of the degree–degree correlations. This lower bound
turns out to be proportional 1/(1 − r), hence, showing that the more negative r (i.e. the more
disassortative the network) the smaller the lower bound and, therefore, the smaller values Q is
allowed to take, and the better the synchronizability of the resulting network.

In the second part, we have constructed optimal networks (with a fixed number of nodes,
links and a given scale-free degree distribution) by employing a recently introduced simulated-
annealing algorithm [8, 9]. We find that optimal networks tend to be disassortative, as found
already in previous studies [19], and in agreement with the expectations from the previously
found lower bound. However, as there is not a one-to-one correspondence between Q and
the correlation coefficient r, more disassortative networks do not always synchronize better.
Actually, we have illustrated how during the optimization process, at some point, the degree of
assortativity increases (i.e. r increases) as the network becomes more and more synchronizable.
The emerging optimal networks exhibit also a tendency to have large loops and a rather intricate
structure (as occurs for entangled networks).

Finally, we have reverted the optimization process and, by minimizing −Q, we have
found what we call pessimally synchronizable networks. These topologies are characterized
by a long string ended by two ‘heads’ of nodes with degrees larger than 2 (required to preserve
the scale-free degree distribution) and are, therefore, highly assortative. Contrarily to the case
above, loops are very short. These topologies are the worst possible ones (compatible with the

8
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imposed scale-free degree distribution) if the task is to synchronize the network. But, on the
contrary, they constitute the best choice if the goal is to avoid synchronization (or, equivalently,
avoid communicability, searchability, homogenization), which might be important for some
applications. For instance, in order to maximize the average time that a random infection (or
random walk) takes to reach an arbitrary target node, this is the type of network to design.
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